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1 Overview

Based on our paper [1], we developed an application which implements the proposed
protocol. Our intention has not been to merely adopt the concepts described in the
paper but also to try finding a good balance between security and usability. We want
to provide a solution which is working “out of the box” and is usable by the general
public, not only by a technologically literate minority. Many applications providing
solutions for secure communications or anonymizing connections are developed with
only technical details in mind, at the same time missing good usability concepts
which are able to transform the technical complexity into an easy-to-use interface.

Several considerations have been taken into account during the process of de-
velopment and we will outline them on the following pages. Our implementation is
far from perfect, of course, and it cannot be perceived as secure until its underlying
concepts and itself will have been sufficiently reviewed, criticized and penetrated
by others. Peeriod is part of our final thesis and our time frame for its develop-
ment consisted of three months. Many implementation details must be improved,
are yet missing or have been done differently in our testing environment and need
be changed in the future (changing Kademlia RPCs from TCP to UDP being the
most significant example, see below). Already planned enhancements or unsolved
known problems will be mentioned in particular.

Thus, this specifications document shall help others to better understand what
and why we did things the way we did. We want to cover all parts of the protocol:
maintaining the network topology, constructing Onion Routing circuits, finding file
locations, requesting and transmitting files. In short, describing the lifespan of a
node in the network: how is it able to join, how can it stay, how does it find things,
how does it download them?

At last, the Appendix provides a detailed description of all message types used.
For simplicity we will refer to the software implementation as ‘Peeriod’.

2 Topology

The peer-to-peer network is based on the distributed hash table (DHT) system
of Kademlia, using a XOR metric as a notion of distance. In this part we assume
general knowledge of Kademlia’s remote procedure calls (RPCs); a very good and
short overview of its protocol can be found at [2].



Every message regarding the topology of the network starts with a header which
includes:

– The ID of the intended receiver node.
– Information about the originator of the message, i.e. the node ID and a list of

addresses which the node can be reached with. Consequently every topology
message carries useful contact information for the buckets.

– The message type.

General notes on the current state of implementation:

1. To locate files Peeriod uses a flooding-based search algorithm only, thus there
is no implementation of the FIND VALUE and STORE RPCs yet. However,
Kademlia’s key-value storage is planned and will be implemented.

2. All communication in Peeriod is TCP-based only, also Kademlia’s RPCs. This
has proved useful in a testing environment where reliable transport is advan-
tageous, but is obviously inconvenient in the long term compared to connec-
tionless communication. Thus, transferring the sending of Kademlia RPCs and
flooding-based messages from TCP to UDP is a high-priority enhancement!

3. We assume a node can be reached via multiple addresses, i.e. 〈IP, Port〉 pairs.
This becomes especially important for proxies (see below).

Although we assume familiarity with Kademlia, we will take a closer look at
our implementation of the node lookup algorithm and how and when buckets are
refreshed. Furthermore, we will describe how a node is able to find another node
for initially joining the network. At last we will explain how a node maintains
information about other nodes and how the network is extended with a proxy
functionality. Proxies allow nodes without open ports to participate in the network.

2.1 Node Lookups and Bucket Refreshes

This Section describes our implementation of the algorithm used for locating k
nodes near a given 160 bit identifier id, where k is a system-wide constant for the
maximum number of nodes stored in a bucket. It uses the concept of loose par-
allelism and is comparable to the one proposed in [2]. We also changed the name
of FIND NODE to a more descriptive FIND CLOSEST NODES. The implemen-
tation is as follows:

1. Construct an empty confirmedList which can hold up to k entries. This will
be filled with the resulting list of close nodes.

2. Construct an empty probeList which holds the nodes yet to probe, i.e. send
FIND CLOSEST NODES messages to.

3. Note: Both confirmedList and probeList must always be sorted by distance
to id (from close to far).

4. Pick the α nodes from the node’s buckets whose IDs are closest to id. α is a
system-wide constant determining the degree of parallelism.

5. Send parallel FIND CLOSEST NODES messages (with id) to these α nodes.



6. Set a parallelismTimeout, using a constant number of milliseconds. This time-
out indicates when to send new FIND CLOSEST NODES messages.

7. If one of the probed nodes responds with a FOUND CLOSEST NODES mes-
sage, it is added to the confirmedList at the right position. The returned close
nodes contained in the FOUND CLOSEST NODES message are inserted into
the probeList.

8. As soon as the parallelismTimeout elapses, the next α nodes are taken from
the probeList and FIND CLOSEST NODES messages are sent to them in
parallel. They are then removed from the probeList as well. Then set the
parallelismTimeout again.

9. When the probeList is empty, a cycleT imeout is set, using another constant
number of milliseconds. As soon as a FOUND CLOSEST NODES message
(containing information about nodes close to id) is received, the cycleT imeout
is revoked, and reset when the probeList becomes empty again.

10. A node lookup is considered finished as soon as:
(a) Either the confirmedList is full, i.e. holds k entries.
(b) Or the confirmedList isn’t full, but the probeList is empty (all nodes have

been probed) and the cycleT imeout has elapsed.

Peeriod uses 3 for α, 20 for k and 1.5 seconds for the parallelismTimeout.

To avoid iterating over all nodes in the routing table (the accumulation of all
k-buckets) when a node A looks for k close nodes for a given id, the following short
algorithm is used:

1. Find the bit with the highest order n in which A’s ID and id differ.
2. Iterate over all buckets with index i, where 0 ≤ i ≤ n and try to get the k

closest nodes to id.
3. If all these buckets together contain less than k nodes in total, iteratively look

for nodes in the buckets with index n + 1, n + 2, .... Stop as soon as k nodes
have been found or all buckets have been checked.

2.2 Joining and maintaining the network

In Peeriod, a node’s ID and its routing table are persisting and are thus not cleared
at runtime. For now we assume a node is able to find an active initial node (how
an initial node can be found is explained in the next Section). With the help of
this entry node the node joins and maintains its network as follows:

1. If the node does not already have an ID it generates one.
2. It finds an entry node and inserts it into the appropriate bucket, PING-ing an

old node if necessary. This happens if the buckets have been persisted from a
previous runtime.

3. The node starts an iterative node lookup for its own ID.
4. If this lookup cycle doesn’t return any nodes, a new entry node is being searched

for.
5. As soon as the lookup cycle for the node’s own ID is completed, the node checks

if it needs any proxies and starts requesting proxies if necessary (proxies are
described in the next but one section).



6. The node refreshes all buckets farther away than its closest neighbor it has
gained knowledge of via the lookup. The closest neighbor will be in the accessed
(definition below) bucket with the lowest index.

7. Once the buckets have been refreshed, the node’s entrance into the network is
considered successful.

This process is comparable to the one described in [2] as well.

Generally, when a node is added to a bucket (or moved from ‘least recently seen’
to ‘most recently seen’), the bucket is considered ‘accessed.’ Unaccessed buckets
are refreshed periodically. In Peeriod, this is hourly. Refreshing a bucket means
performing a lookup operation for a random ID within the bucket’s range.

2.3 Finding an entry node

In order for a node to join the network, it needs to find an active, already partici-
pating entry node. As the protocol only tries to hide file queries and transfers but
not the participation itself, various possibilities exist.

One of our main goals of Peeriod is that it can work out of the box. A user
should not be forced to meticulously configure the application on starting it for the
first time, unless she decides otherwise. Thus, the search for an entry node is the
only part of the protocol where we ‘allow’ centralized processes to slip in.

We want to provide a diversity of possibilities to find an entry node, and the
application should gradually be extended with more and more node discovery op-
tions. Possibilities to publish a node’s location information may range from using
social media accounts to posting in an IRC channel.

The current implementation features:

a) Discovery through HTTP servers

A node POSTs its ID, IP and open ports to an HTTP server in an hourly
interval. Nodes trying to find initial nodes GET a random entry node from the
server. The source code for HTTP servers like this could be made public so generally
everyone using e.g. a shared web hosting service can provide a node discovery
service, if wanted.

Thus, a possible future feature could be flooding lists of these discovery services
through the network.

b) Discovery through persisted routing table

This is the most basic form of node discovery. If the node has access to buckets
which have been saved in a previous runtime, it randomly chooses nodes from it.

A node trying to find an entry node repeatedly tries to gain knowledge about
possible nodes. Once it has received information about a node, it sends a PING
message to it in order to check whether it is active or not. If the PINGed node
responds with a PONG message, it can be used as an entry node. Of course a node
can PING a lot of potential nodes in parallel and only stop PINGing as soon as
one has answered.



2.4 Node Proxies

Node proxying describes the concept of relaying messages bound for an unreachable
node through another – reachable – node which has a direct connection to the
unreachable one. This concept shall give users who cannot (or do not want to)
enable port forwarding the possibility to participate in the network nonetheless, of
course under the condition that the network holds enough other nodes which are
publicly reachable.

For example, assuming there is a node A which is unreachable from ‘outside’,
and there are publicly reachable nodes B and C. We further assume A is sending a
UDP datagram containing a PING message to C. As A’s application is not listening
on any open port, C would have no possibility to answer with a PONG message.
This situation could be solved with A using B as a proxying node. B can be reached
from outside, so A initiates a TCP connection with B and asks B to be its proxy. If
B accepts, A and B keep the connection alive until B should no longer be a proxy,
due to whatever reasons. A now uses B’s contact information as its own: when
A sends a PING to C it prepends B’s address to the message. C can now easily
respond to A with a PONG, for every topology related message contains the IDs
of the message originator as well as the intended receiver. B receives the PONG
message, notices that the message is not intended for itself, and relays it to A. C
never needs to know if A has a proxy or not.

Obviously this scheme can only work if B is an honest node. In order to avoid
relying on a single node only, A should always try to maintain a fixed number of
proxies and substitute them regularly. Regularly changing proxies however is not
implemented yet. For now, new proxies are only requested if old ones die. Moreover,
proxies are also used merely for topology related messages. They do not play any
role in ‘anonymous’ messages, where only TCP connections to specific 〈IP, Port〉
pairs matter!

In Peeriod, a proxy is requested using a PROXY REQUEST message over a
TCP connection. This session must be used by the requested node to either accept
the request with a PROXY ACCEPT message or reject it with PROXY REJECT.
For relaying messages from a proxy to the actually intended receiver, the PROXY
THROUGH message type is used.

A node is considered ‘proxy capable’ if it is publicly reachable and if the number
of nodes it already acts as a proxy for does not exceed a certain self-imposed limit.

3 Anonymity and Onion Routing

On top of this layer – a node maintaing a routing table – the anonymity layer is
constructed. A node’s objective is to permanently maintain a multitude of Onion
Routing circuits which it constructs with the help of the reachable addresses stored
in its routing table.

Messages relatable to the anonymity layer are transferred over TCP only. Node
IDs no longer play a role. TCP sessions and 〈IP, Port〉 pairs (or, in a stricter setup,
only IP addresses) are used to identify communication with other nodes.



If within an Onion Routing circuit the TCP connection between two nodes is
ended (due to whatever reasons), the whole circuit is rendered useless and must be
torn down.

This Section starts with a description of the cryptographic parameters used,
explains how in the current implementation nodes for an Onion Routing circuit are
picked from the routing table and how an Onion Routing circuit is constructed/
maintained.

As a node aims towards always having many circuits to query and request
files, an analogy to the many-headed Greek mythological creature ‘Hydra’ suggests
itself. Thus, instead of Onion Routing circuits, the application’s source code refers
to ‘hydra circuits’. In this document we will use the shorthand ‘circuit’.

3.1 Cryptographical parameters

For authenticated encryption of a circuit session between two nodes, we use 128-
bit AES in Galois Counter Mode, with a random 96-bit initialization vector for
each message. Unfortunately, in the current implementation, no additional authen-
ticated data (AAD) is used per message yet, but a high-priority enhancement is to
introduce sequence numbers for encrypted communication in order to prevent basic
replay attacks. See Section 8 for more information about current implementation
issues.

One of the main goals of Peeriod is to avoid a public-key infrastructure. For the
input material of the key derivation, we use a Diffie-Hellman key agreement with
the 2048-bit MODP group (id 14) as defined in RFC 3526 [3].

For key derivation we use the HMAC-based Extract-and-Expand Key Deriva-
tion Function (HKDF) as proposed in [4], with SHA-256 as a hash function, the
exchanged Diffie-Hellman secret as input keying material, a varying 128-bit salt
value and a zero-length string as info input for the expanding part of the deriva-
tion.

For all other hashing operations, we use SHA-1.

3.2 Picking nodes for a circuit

On the anonymity layer, node IDs are no longer respected. In this sense, a ‘node’
constitutes an unique 〈IP, Port〉 combination. In a stricter setup this can be reduced
to the IP address only, but in our testing environment, we stick to the 〈IP, Port〉
combination.

Assuming a node wants to construct a circuit, it at first picks a batch of nodes
it will use as relay/exit nodes for the circuit. ‘Picking a node’ means randomly
choosing any 〈IP, Port〉 pair from the maintained routing table. Then for each
consecutive node the circuit should be extended with, a batch of nodes used for the
additive sharing scheme is picked in the same fashion. The current implementation
of picking nodes obeys the following rules:

1. A picked relay node cannot be part of any batch used for additive message
sharing.



2. Each additive sharing batch of nodes has a threshold j of known nodes, meaning
that a maximum of j nodes which participated in previous sharing rounds can
be picked again.

3. Each ‘unsuccessful’ try of picking a random node, i.e. choosing a random 〈IP,
Port〉 from the routing table which does not fulfill the above mentioned re-
quirements, increments a counter. Once that counter exceeds some self-imposed
limit, the node waits for some time so that the routing table may get updated
with new nodes in the meantime.

Peeriod currently uses 3-4 relay nodes for a circuit and 4 nodes for an additive
batch, which means that a message distributed with an additive sharing batch is
divided into 5 shares. The number of shares is a network-wide constant!

At the moment the additive sharing scheme is implemented with a single hop,
i.e. the 5 shares meet immediately at the intended relay node. Future enhancements
include the implementation of multiple-hop sharing as described in [1].

3.3 Circuit construction and maintenance

In this Section we describe the process and message flow of constructing a circuit in
the implementation’s current state. We take a look at the flow from three different
perspectives: Firstly, from the viewpoint of a node initiating a circuit which it
intends to use for anonymous communication. Secondly, from the perspective of a
node participating in the additive sharing scheme. Finally, from the viewpoint of
the node which the circuit is extended/initially constructed with.

As stated earlier, in a circuit, connections to a predecessor/successor node are
not reestablished. Two nodes in a circuit use the same connection from start to
finish. Once the TCP connection between them has ended, the whole circuit must be
torn down. ‘Tearing down’ refers to merely killing the connection to the predecessor
and successor. This can be done anywhere in the circuit and thus initiates a chain
reaction of ending TCP connections until all nodes in the circuit have cleaned up
their links.

Generally, two connected nodes within a circuit share a circuitId which identifies
their connection, i.e. a circuitId is always shared between a node and its predeces-
sor/successor, however it is always assigned by the predecessor. In Onion Routing,
circuitIds are used for being capable of correctly relaying messages by relating the
circuitId shared with a predecessor to the circuitId of a connection to the successor.
Usually only the two nodes sharing a circuitId have knowledge of it. For example,
in a circuit A −→ B −→ C −→ D, the initiator node does not know the circuitIds
between B −→ C or C −→ D.

However in our design, a node maintaining a circuit must be able to provide
other nodes with information about how he can be reached by external nodes with-
out disclosing its identity. This is achieved in the following way (using A,B,C,D
from above):

Not only do A and a node the circuit has been extended with (e.g. D, but
of course B and C as well), derive symmetric encryption keys from their shared
secret, but also a 128-bit feedingIdentifier which A can use to anonymously ‘publish’



together with the 〈IP, Port〉 pair of D. Thus, an external node can send a message
to D containing the feedingIdentifier shared between A and D. As D can relate
a specific connection to the used feedingIdentifier, the message can be piped back
through the circuit. Hence, A is externally reachable through theoretically every
relay node in its circuit without needing to announce its identity.

Circuit construction from an initiator’s point of view: We assume a node A
has picked a batch of nodes B,C,D it wants to use as relay nodes from its routing
table. The rest is done as follows:

1. A generates a random 128-bit uuid which acts as an identifier for all shares of
the additive sharing scheme.

2. A furthermore generates a random 128-bit circuitId for the circuit connection
it is about to establish with B.

3. A picks nodes for the additive sharing scheme (as-nodes) used to send the
different shares of the cell-creation message to B.

4. Now A generates its half of the Diffie-Hellman (DH) key agreement (A’s public
key).

5. A computes additive shares which together will result in A’s public key. The
number of shares is the amount of as-nodes + 1.

6. A wraps each share in a CREATE CELL ADDITIVE message, marking it with
uuid. A prepends circuitId to one of these messages. This is the ‘initiator
message’. All other CREATE CELL ADDITIVE messages are now wrapped
up again in an ADDITIVE SHARING message containing the address of B.

7. A sends each ADDITIVE SHARING message to one as-node.
The last CREATE CELL ADDITIVE message containing circuitId is sent di-
rectly to B. The established TCP connection to B is being kept open.

8. A sets a timeout which indicates the time it will wait for a response from B
(via the said TCP connection).

9. The following things can happen:
(a) The timeout elapses and A has received no response

This is considered an error. As B is the first node in the circuit, A kills its
connection to B and must construct a fresh circuit.

(b) A’s connection to B dies
This is considered an error as well. Again, A must construct a fresh circuit.

(c) A receives a CELL CREATED REJECTED message from B
A checks whether the circuitId and uuid provided in the message match
the ones it originally sent. If yes, and the cell request was not rejected,
it computes the shared secret and its hash from the B’s public key pro-
vided in the message payload, and checks whether the computed hash and
the one in the message match. If yes, A derives a key for encrypting out-
going communication, a key for decrypting incoming communication, and
a feedingIdentifier. B is now considered a valid relay node of the circuit.
If the cell request was rejected, A substitutes B with another node from its
routing table, picks new as-nodes and repeats the process.
The failure of one of the checks renders the circuit unusable though: A kills
its connection to B and must construct a new circuit.



The difference between the initial cell and the consecutive extension of the
circuit lies in the ‘initiator message’. Assuming A extends its circuit further with
the node C:

1. A merely generates uuid.
2. A picks a fresh batch of as-nodes.
3. A generates its DH public key and computes the additive shares.
4. All but one shares are sent to the as-nodes. The last share is sent to B, en-

crypted and piped through the circuit, in an ADDITIVE SHARING message
indicating B to further extend the circuit with C.
B can then choose a circuitId itself before sending the so created ‘initiator
message’ (CREATE CELL ADDITIVE) to C.

5. A waits for a reaction which it obviously expects from B in the form of a
CELL CREATED REJECTED message piped back through the circuit. The
handling of the (non-)reaction follows analogously to the creation of the first
cell.

Circuit construction from an additive sharing node’s point of view:
An ‘additive sharing node’ is a node which receives an ADDITIVE SHARING

message from some other node. As an ADDITIVE SHARING message actually
just consists of the concatenation of the 〈IP, Port〉 pair of the intended receiver
and an appendant CREATE CELL ADDITIVE message, all the additive sharing
node has to do is to send the unwrapped message to the included address. The
connection over which the node received the ADDITIVE SHARING message can
then be closed.

Circuit construction from a potential relay node’s point of view:
A ‘potential relay node’ is a node receiving a CREATE CELL ADDITIVE mes-

sage. Its objective is to wait until it has received a complete batch (identifiable by
uuid) of CREATE CELL ADDITIVE messages.

Assuming a node receives such a message, it handles it as follows in the current
implementation:

1. If the node doesn’t already know the uuid of the message, it sets a timeout.
If it elapses and this batch could not be completed, any potential remaining
messages are discarded.

2. The node checks if the message holds a circuitId, i.e. is the ‘initiator message’.
If yes, the connection through which it received the message is being kept open.
Otherwise the connection is closed after the message receipt.

3. If a batch is complete, the node checks whether it can be part of a circuit. That
means that the number of active circuits it acts as a relay/exit node for does
not exceed a self-imposed limit.

4. If it cannot be part of the circuit, it sends back a CELL CREATED REJECTED
message (in the clear) without DH public key and hash via the TCP connection
of the received ‘initiator message’. This indicates a rejection.



5. If it can be part of the circuit, the node generates its half of the DH hand-
shake, computes the shared secret and hash digest, derives the symmetric keys
and feedingIdentifier, and finally sends back a CELL CREATED REJECTED
message containing its DH public key and the shared secret’s hash digest. It
now considers the originator of the ‘initiator message’ as a valid predecessor.

6. The node is now able to decrypt messages coming through the circuit. If it
receives an ADDITIVE SHARING message through it, the node generates its
own circuitId and sends the contained parameters of the decrypted message in
an ‘initiator message’ to the intended node, waiting for a response (only for a
limited time, of course, before killing the connection).

7. If it receives a rejection, that is the response does not include a DH public key,
the connection to the node to extend with is killed. Otherwise it is considered as
a valid successor. In both cases the (encrypted) message is piped back through
the circuit.

In this way a node tries to maintain a constant number of circuits. If a circuit
can no longer be used, a new one is created. It goes without saying that – no matter
if it is from the perspective of a relay node or of an originator – a node within a
circuit encounters any protocol non-compliance or encryption/decryption errors,
the circuit is torn down.

4 Finding files

Peeriod shall support two kinds of locating file information and their whereabouts.
One is a ‘classic’ key-value storage in a way that distributed hash tables are designed
for: information about a file is stored on nodes with IDs close to the hash digest of
the file. Because Peeriod’s initial implementation shall first and foremost act as a
testing environment, the conventional key-value storage is a feature which will be
implemented in a future release.

The second possibility – which is the one currently featured in Peeriod – is a
flooding-based keyword search propagating through the network.

‘File information and its whereabouts’ refers to a block of data containing a
file’s name, its exact size, its hash digest and of course information about how to
contact the node providing the file. This contact information is nothing more than
a list of valid exit nodes chosen from its circuits by providing the file node, i.e. a
list of 〈IP, Port〉 pairs with their appropriate feedingIdentifier.

Thus, a node has the potential to ‘publish’ this file info, either via the key-
value storage or by responding to a flooding-based search query (see below). Then
another node gains the possibility to ‘feed’ a circuit of this node with the help
of the feedingIdentifier (as an exit node can relate a known feedingIdentifier to a
specific circuit it participates in). In short, it can send a message to a node without
needing to know its identity.

Upon this principle the whole concept of finding a file is built, be it via querying
the key-value storage or by flooding the network.



4.1 Flooding-based search

This Section explains how a node anonymously initiates a flooding-based search
and how it is able to receive responses to the exact same query. How an efficient
propagation of a query can be put into practice is explained in [1] and the paper
referenced therein.

Assuming a node wants to flood the network with a specific search query,
it pipes a QUERY BROADCAST message through all its maintained circuits.
A QUERY BROADCAST message signifies an intended node in the circuit to
start flooding the network with a search query. The message consists of the pay-
load carrying the query, e.g. some keywords, and a randomly chosen list of 〈IP,
Port, feedingIdentifier〉 triples referencing exit-nodes of its circuits. These exit
nodes can be used by responding nodes to return their results. Furthermore, the
QUERY BROADCAST message includes a random broadcastId used to identify
the query.

A node in one of the circuits receiving this QUERY BROADCAST message
can now initiate a flooding-based query. It also appends a current timestamp to
the query, so other nodes receiving the broadcast query can decide whether the
query is still valid – and thus must be propagated – or whether it can be discarded,
as it is too old. Moreover, the included broadcastId is memorized by nodes receiving
the query, in order not to propagate queries twice.

If a node receiving the query finds a match in the batch of its shareable files,
it constructs a QUERY RESPONSE. This response message consists of the broad-
castId it is referring to, information about proposed files and a list of exit nodes
(〈IP, Port, feedingIdentifier〉 triples) of the respondent’s circuits – so the querying
node gains knowledge about how to contact the respondent in case of a desired file
transferal.

Because the respondent must not disclose its identity either, the QUERY RES-
PONSE message is sent through one of its maintained circuits with the instruction
(EXTERNAL FEED message) to ‘feed’ (GOT FED message) the response to one
of the exit nodes included in the query. Before actually sending the GOT FED
message however, the exit node which is about to feed another node at first sends
a FEED REQUEST message. This is to ensure that the other side is still part
of a circuit to which it can relate the feedingIdentifier. This request is either ac-
cepted (FEED REQUEST ACCEPT) or rejected FEED REQUEST REJECT. In
the latter case the exit node tries to feed another circuit (if present).

This ‘feeding of circuits’ allows both the querying and the responding node to
stay anonymous.

5 Requesting and transfering files

This Section explains the situation of a node which has received a response to one
of its queries deciding to download one of the proposed files.

Wrapping up the current situation, two nodes can now anonymously commu-
nicate with each other by always appending a list of 〈IP, Port, feedingIdentifier〉



triples to a message and letting an exit node of one of their circuits ‘feed’ a circuit
of the opposite side.

In the following, ‘A sends a message to B’ refers to A knowing of B’s exit nodes.
A appends the list of its own exit nodes to the message, pipes it through one of
its circuits in an EXTERNAL FEED message, instructing the receiving exit node
to feed a circuit of B. Supposing node A wants to download a file proposed in a
response sent by node B, the process of requesting and downloading a file is as
follows:

1. A sends to B a SHARE REQUEST message containing the hash digest of
the file A wants to download. A furthermore adds the public key of a Diffie-
Hellman handshake to the message, as well as a 16-byte randomIdentifier. If B
answers, B needs to mark his response with this randomIdentifier, so A is able
to correctly relate the response to its file request.

2. If B receives the SHARE REQUEST message and it is in fact able to provide
the requested file, it generates its own half of the DH handshake, computes
the shared secret and derives an incoming key for decryption and an outgoing
key for encryption. Moreover, B derives another 16-byte identifier which A
must mark its next message with. B can now respond with a SHARE RATIFY
message, including the DH public key, the hash digest of the shared secret, as
well as (already encrypted) the filename and exact size of the file it is about to
upload. B marks the SHARE RATIFY message with the randomIdentifier.

3. If A receives the SHARE RATIFY message, it can compute the shared se-
cret itself, derive the keys and the expected identifier of the next message. A
decrypts the filename and filesize and checks if it matches the information it
already received through the response to the query. If everything matches, A
starts requesting chunks of the file.

4. What then follows is a constant question-and-answer flow: A requests a chunk
of data with a BLOCK REQUEST message, marking the message with the
derived identifier and appending another random identifier to the encrypted
message (which again B must use for its next message). B responds to the
request with a BLOCK message including the data chunk, also appending the
next expected identifier. A processes the received data, requests the next chunk,
B responds with the chunk etc. etc. One side always marks its message with
the identifier it received in the most recent message and provides on its part
the opposite side with an identifier for the next expected message.
The identifier which a message is marked with is always sent in the clear,
whereas the next expected identifier is included in the encrypted payload.

5. In this fashion the whole file is transferred until either something goes wrong
(e.g. one side fails to reply within a given time frame, an encryption/decryption
error happens, the file transfer is manually aborted...) or A acknowledges a com-
plete download by sending a BLOCK REQUEST asking for a chunk starting
at the last byte of the file + 1.

6 Indexing files and matching queries

In order to make files available to others, users can add folders to their ‘shared fold-
ers’, whose contents will be analyzed and indexed. For this analysis and indexation
process, Peeriod utilizes a unitized plugin architecture.



Plugins register on specific file formats; when a folder is being indexed, parts of
a contained file are passed to the interfaces of the appropriate registered plugins,
each of which classifies the file by creating its own index which is then stored in a
database. Hence, the database can contain multiple perceptions of the very same
file. The benefit of this modular design is that one is able to easily add and remove
different data analysis methods, which all act independently from each other.

Therefore, given arbitrary keywords, a valid file query is created by an activated
plugin by populating its parameters with these keywords. Moreover, plugins can
provide their own detailed search fields to the user interface. Thus, a node receiving
such a detailed query can significantly narrow down potential results:

Incoming queries are run against the database which returns matching indices.
In the best case matching indices are associated to the plugin which was used to
construct the query with in the first place. As each plugin always adds the name and
the hash digest of the file to its created index, a basic match-keyword-to-filename
fallback is provided regardless of currently used plugins.

Sensitive data (file system information etc.) is stripped off each index before
issuing a response. As soon as the querying node receives such a response, it runs
its own query against the included indices again, adding a ‘result score’ (the higher,
the more likely the indice represents a desired file). This two-step verification is a
basic mechanism for preventing that spam or results which have been tampered
with are regarded as valid results and are presented to the user.

As opposed to conventional client-server search engines using a central index,
in Peeriod obviously a querying node cannot rely on receiving results in a ranked
order. Hence, there seems to be a certain contradition between low-latency and
high-score results. On the one hand results should be returned to the user interface
as fast as possible – speed is paramount. On the other hand, however, there is
always the possibility that results with a higher score may still be received. This
challenge is a usability problem, though, which can mainly be solved by the user
interface.

7 User interface

Peeriod’s user interface resides in the browser (in the current implementation in the
form of a Chrome browser extension). This has several reasons. One is to avoid the
difficulty which interfaces of cross-platform applications have to face when trying to
embed them into the overall usability of an operating system. Often the resulting
compromise tries to, but unfortunately fails to fit into its surroundings, leaving
behind a slightly awkward user experience.

Web browsers, however, are inherently being considered as windows to the vast
world of the Internet – a fact which greatly increases the willingness of an user
to accept and come to terms with unconventional and new interfaces. Moreover,
browser technologies increasingly influence operating systems, displacing or merg-
ing into known environments (for example Google’s Chromebook).



Regarding Peeriod, the only part of the application which is still optically situ-
ated within the operating system’s environment is a background application whose
small icon is visible in the status/menu bar.

Hoisting the user interface into the browser necessarily means that it must
also be started when the application is launched – and vice versa. Because many
users constantly have their web browsers running, this might effectively increase
the number of nodes in the network, stabilizing and maintaining its topology and
anonymity in the background.

Putting the interface inside a browser also means being able to access it from
almost every device: Having a single machine within a local network which is run-
ning the Peeriod application and searching/downloading from a mobile device or
even a TV is thus perfectly possible.

8 Technologies used and additional feature list

The Peeriod project is an experiment and the application should be regarded front
and foremost as a proof-of-concept implementation.

Concepts and technologies may change, may never change, or may be exchanged
completely. Nevertheless and for the sake of completeness we want to provide a
description of the technologies/platforms used in the current implementation.

Peeriod’s source is written for Node.js [5], a platform utilizing Google Chrome’s
JavaScript runtime v8 [6] and libuv [7], a C library for asynchronous I/O. The
desktop application is created for node-webkit [8], a runtime based on Chromium
[9] and Node.js. Node-webkit combines the event-processing of both Node.js and
Chromium, and provides a way for them to access each other’s context. This gives
developers the possibility to develop native, cross-platform applications with web
technologies only.

Hence, Peeriod’s core is written entirely in JavaScript, a fact which contributed
greatly to permitting a rapid development.

For storing a node’s contact information in the buckets, we use the Lightning
Memory-Mapped Database (LMDB) [10], a compact and fast key-value database.

For indexing files and matching them against incoming queries, ElasticSearch
[11] (a search server which is based on Apache Lucene [12]) is utilized in combina-
tion with Apache Tika [13] for analysis of file contents.

The user interface is set within a Chrome extension [15], its reactive data ren-
dering is based on React [16]. Peeriod’s core communicates with its user interface
via WebSockets with added multiplexing capabilities.

The following is a list of current implementation issues and future features (not
ordered by priority):

1. GCM authentication tag
We decided not to rely on unstable releases of the above mentioned technolo-
gies. Unfortunately when encrypting/decrypting with AES in Galois Counter
Mode, Node.js exposes a way to access the resulting authentication tag only in
its unstable version 0.11.13 at the time of writing. Therefore Peeriod currently



uses an authentication tag of 128 zero bits for all its messages. The authenti-
cation part is skipped. As this is a severe security issue of the implementation,
it obviously will be fixed as soon as possible.

2. Message sequence numbers as AAD
Related to the authentication tag issue, using message sequence numbers as
additional authenticated data (AAD) in encrypted communication should be
used. This is not implemented yet.

3. Use UDP for Kademlia RPCs
A main planned enhancement is switching from TCP to UDP transport when
sending Kademlia RPCs and flooding-based queries. This will include changes
in the message protocol though.

4. Implementation of a basic key-value storage
This planned feature refers to storing information about a file on nodes with
IDs close to the file’s hash digest.

5. Additional node discovery options
More concepts for how a node entering the network can find its initial contact
node should be implemented.

6. Port forwarding with UPnP
Peeriod requires users to manually open ports in their router if they do not
want to rely on proxies or wish to be part of other nodes’ circuits as well. This
process of enabling port forwarding can be simplified using the Universal Plug
and Play (UPnP) Protocol.

7. Multiple hops in additive sharing
The additive sharing scheme can be refined by using multiple hops when relay-
ing shares, so the initiator of a circuit is able to further hide the fact that it is
extending a circuit.

8. Regularly changing circuits
Peeriod currently only tears down constructed circuits when encountering be-
haviour which is not compliant to the protocol, encryption/decryption errors,
or when any TCP connection within the circuit ends. This means that theo-
retically a node may never change it’s circuits from application launch to exit.
This can be changed to regularly tearing down circuits and exchanging them
with new ones.

9. DoS prevention
Analysis of and defense mechanisms against denial-of-service attacks should be
improved.



10. Bandwidth control and round-trip time
If needed, Peeriod takes up all your bandwidth. Users should however be able
to impose limits on bandwidth usage. Moreover, circuit speed may be improved
by measuring the round-trip time for ping-pong messages and choosing nodes
accordingly.

11. Parallel data block transmission when downloading/pausable down-
loads
Presently when downloading a file from another node, data blocks are requested
and acknowledged one by one, until the whole file has been transferred. This
scheme can be improved by requesting multiple blocks from the uploader node
in parallel, using varying ciruits. Furthermore, a mechanism for pausing and
resuming downloads can be provided.

12. Seeding files from multiple providers
Related to parallel block transmission between the downloader and only one
uploader, file transferal can be significantly sped up by downloading one file
from multiple sources, if present. For example this mechanism is being success-
fully used by the BitTorrent protocol [14].

13. Improved file system handling
Regarding indexing and analysing files which a node wants to provide, the
mechanism of detecting and handling changes in the file system like renaming,
moving or copying files should be improved. Moreover, there are still problems
occuring when using e.g. external drives as file source.

14. ‘Raw node’ applications
A useful feature would be to provide application bundles which are decoupled
from the user interface as well as the file provision mechanisms. Thus, one is
able to run ‘raw nodes’ which only exist in order to stabilize the topology and
improve the anonymity of other users.

15. Sandbox
The process of matching search queries to files and the analysis of file contents
is happening within a sandbox whose implementation must be significantly im-
proved or even rebuilt completely.

16. Third-party software components
A very nice feature would be providing possibilites of hooking third-party plu-
gins to the application in order to empower interested contributors to develop
own search algorithms and file content analysis. Without proper code review
or satisfying sandboxing mechanisms though, a truly decentralized distribution
of third-party plugins must remain for the time being a dream of the future.

17. Spam/manipulated results avoidance
More research and effort can be put into using mechanisms to further avoid
spamming and tampering with search results.



18. Enrich search results with type-specific information
In the future, responses to queries shall contain attributes which are specific
to the respective file type, for example showing thumbnail images or providing
content summaries.

19. GUI: Parallel queries
Although in Peeriod a user is able to handle file queries in parallel, there is
currently no resemblance of simultaneous queries in the user interface.

20. Adapting search fields
Each search plugin handles its query-to-file matching differently. So an improve-
ment would be to implement ‘advanced search fields’ into the user interface for
detailed filtering capabilities. Thus, when for example looking for text docu-
ments by a specific author, the name of the author can already be included in
the query to signifcantly narrow down results.

21. GUI: Personalized interface and visual feedback of status in network
The graphic user interface should necessarily mirror a node’s current status in
the network, i.e. has it successfully joined, how many circuits does it maintain,
does it need a proxy, how many circuits is it a relay node of, etc. By displaying
how many bytes a node has already uploaded since installation of Peeriod, a
user may also build up some personal connection to the node (numbers going
up!).

22. External viewers
Peeriod’s application design includes the possibility to potentially search and
download from everywhere within a home network, even a TV. How nice would
it be if you could search, download, and even watch a movie using only your TV?

23. Securing the data stream to the user interface
As just mentioned, Peeriod’s user interface can theroetically be accessed from
everywhere within a local network. Therefore, the possibility of securing this
data stream from Peeriod’s core to the user interfaces must be taken into con-
sideration.



A Message formats

This appendix contains a listing of the different message formats Peeriod uses in its
current implementation. The message formatting is far from perfect and in certain
cases message padding should be implemented to impede guessing remaining path
lengths within circuits by message size analysis.

Each protocol message begins with four bytes indicating its size, i.e. the number
of bytes which will follow. In the following we refer to this amount of bytes after
the four size indicating bytes as the ‘message’. 0x00000000 merely indicates a TCP
heartbeat.

We differentiate between topology messages (non-anonymous messages including
node IDs and contact/proxy information etc.) and hydra messages (anonymity-
related messages without any topology-relevant information).

If a message is topology relevant, the first 20 bytes are reserved for the ID of the
intended receiver. Otherwise if the first 20 bytes are all zero, it is a hydra message.
This differentiation will be altered in a future release, because these 20 bytes can
actually be reduced to one indicator byte in the beginning for hydra messages.
Moreover, this means that a node with the id 0 may not exist. This is a current
painful and useless misconception.

A.1 Topology messages

All topology messages start with a header containing:

– 20 bytes for the ID of the intended receiver.
– 20 bytes for the ID of the sender.
– A varying amount of bytes for the address block of the sender providing infor-

mation about how the sender can be reached. For each 〈IP, Port〉 pair applies:
• 1 byte for the kind of IP: 0x06 for IPv6 addresses, 0x04 for IPv4 addresses.
• Then the IP address itself: 16 bytes for IPv6, 4 bytes for IPv4.
• At last 2 bytes for the open port.

The end of the address block is indicated by the octet 0x05.
– The header is concluded by two octets for the type of the payload. (Note:

This can actually be reduced to one byte. We will never cross the limit of 256
message types...)

The header is directly followed by the payload of the according message type.
A list of topology-related payload types in alphabetical order and their content
follows:

ADDRESS CHANGE (0x5005)
The payload is empty. Indicates a node that the sender’s address has changed, but
does not expect a reaction (as opposed to PING).



BROADCAST QUERY (0x4252)
This type of message is propagated through the network when performing a flooding-
based search. Its payload consists of:

– 16 bytes for the identifier of the broadcast.
– 8 bytes for a timestamp indicating when the query has been initiated.
– A varying number of bytes for the actual query payload.

FIND CLOSEST NODES (0x4649)
The payload merely consists of 20 bytes for ID which was sought-after.

FOUND CLOSEST NODES (0x464f)
The payload consists of:

– 20 bytes for the ID which was sought after.
– A varying amount of bytes for the list of found close nodes.

For each node applies:
• 20 bytes for the ID of the found node.
• The found node’s address block (formatted equally to the address block in

the header)

PING (0x5049)
The payload is empty.

PONG (0x504f)
The payload is empty.

PROXY ACCEPT (0x5002)
The payload is empty. PROXY ACCEPT signals to the receiver that the sender
accepts its request for a proxy.

PROXY REJECT (0x5003)
The payload is empty. PROXY REJECT signals to the receiver that the sender
rejects its request for a proxy.

PROXY REQUEST (0x5001)
The payload is empty. This message asks the receiver to act as a proxy for the
sender.

PROXY THROUGH (0x5004)
The payload is the whole message (header and payload, but without size-indicating
bytes) which was sent to the proxy and which it now passes on to the actual intended
receiver.

A.2 Hydra messages

As stated earlier, hydra messages begin with 20 zero bytes and do not carry any
topology-relevant information. The 21st octet indicates the payload type. In the
following list, ‘message’ refers to the payload starting from the 22nd byte.



ADDITIVE SHARING (0x01)
The message starts with the 〈IP, Port〉 combination of the node to which the
included payload must be relayed to. A node receiving such a message takes the
payload, wraps it within a CREATE CELL ADDITIVE message and sends it to
the specified node.

– The 〈IP, Port〉 pairs of the node to relay the included payload to:
• One octet for the IP type: 0x06 for IPv6, 0x04 for IPv4
• The IP: 16 octets for IPv6, 4 octets for IPv4
• 2 octets for the number of the open port.

– The address is directly followed by the complete payload (without message type
indicator byte!) of a CREATE CELL ADDITIVE message.

CELL CREATED REJECTED (0x05)
A CELL CREATED REJECTED message is a response to a request asking to be
part of a circuit (i.e. the response to a full batch of CREATE CELL ADDITIVE
messages). CELL CREATED REJECTED messages must be sent to the originator
of the ‘initiator message’ of an additive sharing batch.

– 16 bytes for the circuitId which was extracted from the ‘initiator message’.
– 16 bytes for the uuid of the additive sharing scheme this response refers to.
– If the request is not rejected: 20 bytes for the hash digest of the shared secret.
– If the request is not rejected: 256 bytes for the padded generated Diffie-Hellman

public key.

CREATE CELL ADDITIVE (0x02)
Messages of this type are used for constructing circuits and carry one share of the
additive sharing scheme.

– 1 byte indicating whether it is an ‘initiator message’ or not. 0x00 for yes, 0x01
for no.

– 16 bytes for the circuitId if it is an ‘initiator message’.
– 16 bytes for the uuid of the additive sharing batch this message belongs to.
– 256 bytes for one share of the padded Diffie-Hellman public key.

ENCRYPTED DIGEST (0x04) and ENCRYPTED SPITOUT (0x03)
These two message types are used for sending encrypted messages through a circuit.

An ENCRYPTED SPITOUT message is one which originates from a circuit’s
initiator and which carries a layered-encrypted payload. A node receiving such a
message decrypts the payload and exchanges the circuitId from the message with
the circuitId it shares with its successor, before sending it on.

All ENCRYPTED SPITOUTs consist of:

– 16 bytes for the circuitId
– 12 bytes for the initialization vector
– The complete encrypted payload
– 16 bytes for the authentication tag

(only present if message has reached receiver)



On decrypting the encrypted payload, the first decrypted byte indicates whether
the message has received its destination (and must not be sent on) and can be inter-
preted (0x01) or not (0x00). Thus, a node receiving an ENCRYPTED SPITOUT
message decrypts it and checks whether it is the intended receiver itself. If not, it
merely removes the first byte from the decrypted payload, exchanges the circuitId
and send it on.

On the other hand, if the node is the intended receiver, the last 16 bytes of the
message may not be decrypted, as they constitute the authentication tag. Messages
within circuits are only authenticated edge-to-edge. The resulting fully decrypted
payload is treated as a hydra message (without the initial 20 zero bytes), i.e. the
first byte of the fully decrypted payload again indicates the message type.

As soon as the key negotiation within a circuit is completed, the relay nodes
and the initiator of the circuit always expect ENCRYPTED SPITOUT or EN-
CRYPTED DIGEST messages and do not react to cleartext messages.

FILE TRANSFER (0x06)
FILE TRANSFER messages relate to some sort of file transferal, querying and
requesting. FILE TRANSFER messages always start with a 16 byte transferIden-
tifier which can have different meanings. The transferIdentifier is directly followed
by one octet indicating the subtype of the message – thus FILE TRANSFER mes-
sages can be split up again into different submessages. After the indicator byte the
payload directly follows.

A.3 File transfer submessages

In logical order. File transfer messages often contain a feeding-node-block, i.e. the
list of exit nodes (〈IP, Port, feedingIdentifier〉 triples) which can be fed messages
to pipe them back through their related circuits.

A feeding-node-block consists of the following parts:

– 1 byte indicating the number of nodes.
– For each node applies:
• 16 bytes for the node’s feedingIdentifier.
• 1 byte for the IP type: 0x04 for IPv4 or 0x06 for IPv6.
• The IP address: 16 bytes for IPv6, 4 bytes for IPv4.
• 2 bytes for the open port.

EXTERNAL FEED (0x02)
transferIdentifier: 16 zero bytes. The payload is:

– The feeding-node-block with which the receiver determines who feed the pay-
load to (as described above)

– The payload to feed: This is the whole payload of a FILE TRANSFER message
(i.e. transferIdentifier and submessage indicator byte).



FEED REQUEST (0x08)
transferIdentifier: 16 bytes for the feedingIdentifier of the node which is about to
get fed.

The payload is empty. A node receiving a FEED REQUEST message must
either reject (FEED REQUEST REJECT) if it is no longer part of a circuit which
it can relate the feedingIdentifier to, or accept (FEED REQUEST ACCEPT).

FEED REQUEST ACCEPT (0x09)
transferIdentifier: Must be similar to the transferIdentifier used in the FEED REQUEST
this message refers to.

The payload is empty.

FEED REQUEST REJECT (0x10)
transferIdentifier: Must be similar to the transferIdentifier used in the FEED REQUEST
this message refers to.

The payload is empty.

GOT FED (0x03)
This is the corresponding side of an EXTERNAL FEED message, i.e. the message
type a node uses when feeding an exit node of a circuit. The transferIdentifier in
this case is the feedingIdentifier of the node which gets fed, so it knows which circuit
to choose.

The payload is the same complete one extracted from the EXTERNAL FEED
message.

Although GOT FED messages can of course contain encrypted information (see
share messages below), the message itself is sent in cleartext from one circuit to
the other.

QUERY BROADCAST (0x01)
QUERY BROADCAST messages are piped through a circuit to an exit node,
signaling to the receiver to initalize a flooding-based search with the contained
query body. The transferIdentifier is chosen randomly and must be used as broad-
castId by the recipient when starting to flood the network. The payload of a
QUERY BROADCAST message consists of a feeding-node-block chosen by the
message originator, and the actual query body. The node receiving such a message
uses the contained information to correctly construct a BROADCAST message.

QUERY RESPONSE (0x04)
QUERY RESPONSE messages are fed to an exit node which pipes it back through
its circuit. Messages of this type are responses containing file suggestions. The
transferIdentifier of a QUERY RESPONSE message matches the identifier of an
earlier received query which the file suggestions refer to.

The following file transfer message types are used when actually requesting and
transmitting a file. They are always sent anonymously from the originator to the
intended recipient by feeding each other’s circuits with EXTERNAL FEED and



GOT FED messages. They always contain a feeding-node-block (only unencrypted
in SHARE REQUEST messages) to signal to the opposite side how the originator
of the message can be reached.

SHARE REQUEST (0x05)
The transferIdentifier is chosen randomly. The recipient responding with a SHARE RATIFY
message must use this transferIdentifier for its response.

– The feeding-node-block chosen by the sender.
– 20 bytes for the hash digest of the requested file.
– 256 bytes of the sender’s padded Diffie-Hellman public key.

SHARE RATIFY (0x06)
If a requested node can in fact provide the desired file, it responds with a SHARE RATIFY
message. A message of this type concludes the key exchange and confirms the file
request by providing its exact size and name. The transferIdentifier must match
the identifier used in the earlier received SHARE REQUEST message.

– 256 bytes for the sender’s padded Diffie-Hellman public key.
– 20 bytes for the hash digest of the shared secret.
– Already encrypted with a derived symmetric key:
• The feeding-node-block chosen by the sender.
• 8 octets for the size of the provided file.
• A varying number of bytes for the UTF-8 string representation of the pro-

vided file’s name.

ENCRYPTED SHARE (0x07)
The payload of ENCRYPTED SHARE messages is – as the name already states it –
completely encrypted. These messages are sent between two parties (by feeding each
other’s circuits) as soon as they have negotiated symmetric keys for file transferal.
The transferIdentifier of ENCRYPTED SHARE messages is constantly changing:
A node A always includes in the message’s encrypted payload the identifier which
a node B must use for a successive message. An only exception is the first message
following a SHARE RATIFY message, as in this case the expected transferIdentifier
can be derived from the shared secret.

The first octet of the decrypted payload of an ENCRYPTED SHARE message
indicates the type of another three possible submessages:

SHARE ABORT (0x01)
A SHARE ABORT message gracefully signals the abortion of a file transmission.
Thus, SHARE ABORT messages can be sent by either downloader or uploader.
The payload consists of information about the shared file to impede forged abortion
messages:

– 8 bytes for the file’s size.
– 20 bytes for the file’s hash digest.
– A varying number of bytes for the UTF-8 string representation of the file’s

name.



A SHARE ABORT message does not include an identifier for a successive mes-
sage, as it marks the end of a file transmission.

BLOCK REQUEST (0x02)
Requests a block of data taken from the file, starting from the specified byte posi-
tion. It consists of:

– The feeding-node-block chosen by the sender.
– 8 bytes for the position of the the first byte of the expected block within the

whole file.
– 16 bytes for a random identifier which must be used by the recipient in a

successive message.

BLOCK (0x03)
The response to a BLOCK REQUEST message, carrying a block of data.

– The feeding-node-block chosen by the sender.
– 8 bytes for the position of the first byte of the expected block within the whole

file.
– 16 bytes for a random identifier which must be used by the recipient in a

successive message.
– A varying number of bytes for the block of data.
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